
An Introduction to Ensemble Methods for
Machine Learning

K. Tyler Wilcox
Rochester Institute of Technology

April 23, 2016

Classifying Spam Email: Isn’t One Model Enough?

Consider predicting which emails are spam (spam data from R
package kernlab)
n = 4601 observations
p = 57 features
Y = {spam, nonspam}
No missing values to deal with
Pre-process by dropping feature “num857” due to
multicollinearity
Standardize all remaining p = 56 features

Feature Engineering

Prepare packages and spam data
pacman::p_load(kernlab, dplyr, caret, rpart)
data(spam)
spam = spam %>% tbl_df()
Find correlated predictors
spam %>% select(-type) %>% cor() %>%

findCorrelation(names = TRUE, verbose = TRUE)

Compare row 32 and column 34 with corr 0.996
Means: 0.143 vs 0.059 so flagging column 32
All correlations <= 0.9

[1] "num857"

Training/Testing Split

Drop highly redundant feature 'num857'
clean_spam = spam %>% select(-num857)
Split data into train and test set
set.seed(122)
id_tr = clean_spam %>% select(type) %>% unlist() %>%

createDataPartition(p = 0.75, list = FALSE)
train = clean_spam %>% dplyr::slice(id_tr)
test = clean_spam %>% dplyr::slice(-id_tr)
Center and standarize training data
trans = train %>%

preProcess(method = c("center", "scale"))
tr = trans %>% predict(newdata = train)
te = trans %>% predict(newdata = test)

Classification Trees (Breiman, 1984)

Given data D = {(x1, y1), . . . , (xn, yn)}
xi ∈ X p, yi ∈ {1, . . . , g}, i = 1, . . . , n
A tree T partitions X into K regions R1, . . . ,RK where

T = ∪K
k=1Rk

Tree built using a recursive partitioning algorithm that forms
splits over a given feature xj , j = 1, . . . , p to minimize node
impurity (e.g., Gini index, cross entropy)
The piecewise estimated function is then

f̂T (x) =
K∑

k=1
ŷk Ik(x) where Ik(x) = 1x∈Rk

ŷk = argmax
{

1
|Rk |

∑
xi∈Rk

I(yi = c)
}
, c = 1, . . . , g

Visualizing Tree Partitioning

nonspam

nonspam nonspam

spam

−20

−10

0

10

20

−40 −20 0 20 40
Principal Component 1

P
rin

ci
pa

l C
om

po
ne

nt
 2

Figure 1. Classification tree estimated predictions

Classification Tree in R

Set training options
ctrl = trainControl(method = "repeatedcv")
set.seed(333)
Train and optimize tree, predict on test set
tree_tr = train(form = type ~ .,

data = tr,
trControl = ctrl,
method = "rpart")

pr_tree = predict(tree_tr,
newdata = te %>% select(-type))

Classification Tree Accuracy: Can We Do Better?

The pruned classification tree does reasonably well
Accuracy = 87.04%

Predictions

True Response nonspam spam
nonspam 653 44
spam 105 348

Table 1. Confusion matrix for classification tree

Bias and Variance: Improving Accuracy

Error(x) = E[(f (x)− f̂ (x))2]

=
(
E
[
f̂ (x)

]
− f (x)

)2
+ E

[(
f̂ (x)− E[f̂ (x)]

)2]+ σ2

= Bias2 + Variance + Noise

Minimize bias → under-fit
Minimize variance → over-fit
Classification tree is fairly accurate but highly unstable
Increase depth → reduce bias, increase variance
Decrease depth → reduce variance, increase variance

General Ensemble

Form M estimators of the true function g

{ĝ1(x), ĝm(x), ĝM(x)}

Assign weights αm for each learner ĝm(x), m = 1, . . . ,M
Form the ensemble estimator

ĝensemble(x) =
M∑

m=1
αmĝm(x)

Reducing Variance: Bagging

Breiman (1996) proposed bootstrap aggregation to reduce
variance of an estimator
Bagging increases accuracy by decreasing variance
Let learner ĝm(x) = f̂T be a classification tree trained on the
bootstrap sample m, m = 1, . . . ,M
Set weights αm = 1

M
Form the bagged estimator

ĝbag(x) =
M∑

m=1
αmĝm(x)

= 1
M

M∑
m=1

f̂ (m)
T (x)

Trees grown to maximum depth → minimal bias

Bagging in R

pacman::p_load(doParallel, rpart)
set.seed(333)
cl <- makeCluster(detectCores() - 1, port = 11999)
registerDoParallel(cl)
Train and optimize tree, predict on test set
bag_tr = train(form = type ~ .,

data = tr,
trControl = ctrl,
method = "treebag",
allowParallel = TRUE)

stopCluster(cl)
saveRDS(object = bag_tr, file = "bag_train.rds")
pr_bag = predict(bag_tr,

newdata = te %>% select(-type))

Bagging Accuracy

Bagging dramatically improves classification tree performance
Accuracy = 95.91%

Predictions

True Response nonspam spam
nonspam 677 20
spam 27 426

Table 2. Confusion matrix for bagging

Bagging + Random Subspace Learning: Random Forests

Breiman (2001) proposes random forest algorithm
Random forest uses bootstrap sampling of both observations
and features for each learner
Let learner ĝm(x) = f̂T be a classification tree trained on the
bootstrap sample of observations m, m = 1, . . . ,M using a
random subset of features
Set weights αm = 1

M
Form the random forest estimator

ĝrF (x) =
M∑

m=1
αmĝm(x)

= 1
M

M∑
m=1

f̂ (m)
T (x)

Random Forest in R

pacman::p_load(doParallel, ranger)
set.seed(333)
cl <- makeCluster(detectCores() - 1, port = 11999)
registerDoParallel(cl)
Train and optimize tree, predict on test set
rf_tr = train(form = type ~ .,

data = tr,
trControl = ctrl,
method = "ranger")

stopCluster(cl)
saveRDS(object = rf_tr, file = "ranger_train.rds")
pr_rf = predict(rf_tr,

newdata = te %>% select(-type))

Random Forest Accuracy

Random forest provides an improvement over bagging
performance
Accuracy = 96.26%

Predictions

True Response nonspam spam
nonspam 678 19
spam 24 429

Table 3. Confusion matrix for random forest

Weighted Ensembles: AdaBoost

Freund and Schapire (1995) propose AdaBoost
Weak learners aggregated with updated weights
Bootstrapping distribution for learner gm depends on learner
gm−1
The resulting classifier minimizes the exponential loss function∑

i log(1 + exp−yig(xi)).

AdaBoost Algorithm

For m in 1, . . . ,M
Set pm = wm∑n

i=1
wm

i

For t in 1, . . . ,T
1 Fit base learner gt and compute its error,
εm =

∑n
i=1 pm

i |gm(xi)− yi |
2 If εm < ε

Set βm = εm
1−εm

Update weights, wm+1
i = wm

i β
1−|gm(xi)−yi |
m

3 Else resample wm
i and return to (1)

ĝf (x) =
{

1,
∑M

m=1 log(βm)hm(x) ≤ 1
2
∑M

m=1 log(βm)
0, otherwise

}

AdaBoost in R

pacman::p_load(doParallel, adabag)
set.seed(333)
cl <- makeCluster(detectCores() - 1, port = 11999)
registerDoParallel(cl)
Train and optimize tree, predict on test set
ada_tr = train(form = type ~ .,

data = tr,
trControl = ctrl,
method = "ada")

stopCluster(cl)
saveRDS(object = ada_tr, file = "ada_train.rds")
pr_ada = predict(ada_tr,

newdata = te %>% select(-type))

AdaBoost Accuracy

AdaBoost provides an improvement over classification trees
On this data set, AdaBoost performs comparably to bagging
but worse than random forest
Accuracy = 95.74%

Predictions

True Response nonspam spam
nonspam 674 23
spam 26 427

Table 4. Confusion matrix for AdaBoost

Gradient Descent in Function Space: Gradient Boosting

AdaBoost is limited by its use of the exponential loss
Sensitive to outliers and noise

Gradient boosting algorithm proposed by Friedman (2001)
Generalizes boosting to any loss function for which a gradient
is well-defined
Algorithm:

F0(x) = argminρ

∑n
i=1 L(yi , ρ)

For m ∈ 1, . . . ,M

Update ỹi = −
[
δL(yi ,F (xi))
δF (xi)

]
F (x)=Fm−1(x)

, i = 1, . . . , n

am = arg mina,β
∑n

i=1 [ỹi − βh(xi ; a)]2
ρm = arg minρ

∑n
i=1 L(yi ,Fm−1(xi) + ρh(xi ; am))

Fm(x) = Fm−1(x) + ρmh(x; am)

Gradient Boosting in R

pacman::p_load(doParallel, xgboost)
set.seed(333)
cl <- makeCluster(detectCores() - 1, port = 11999)
registerDoParallel(cl)
Train and optimize tree, predict on test set
gb_tr = train(form = type ~ .,

data = tr,
trControl = ctrl,
method = "xgbLinear",
allowParallel = TRUE)

stopCluster(cl)
saveRDS(object = gb_tr, file = "gb_train.rds")
pr_gb = predict(gb_tr,

newdata = te %>% select(-type))

Gradient Boosting Accuracy

Gradient boosting provides an improvement over classification
trees
On this data set, gradient boosting performs comparably to
bagging and AdaBoost but worse than random forest
Accuracy = 95.83%

Predictions

True Response nonspam spam
nonspam 673 24
spam 24 429

Table 5. Confusion matrix for gradient boosting

Cross Validation Estimation of Generalization Error

Tree Bagging AdaBoost Random Forest

80
85

90
95

10
0

Te
st

 A
cc

ur
ac

y
(%

)

Figure 2. Box plots of the classification test error for the spam data
set using 50 rounds of cross validation.

References

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J.
(1984). Classification and regression trees. Monterey, CA:
Wadsworth & Brooks/ Cole Advanced Books & Software.
ISBN 978-0-412-04841-8.
Breiman, L. (1996). Bagging predictors. Machine Learning, 24,
123 - 140.
Breiman, L. (2001). Random forests. Machine learning, 45(1),
5-32.
Freund, Y., & Schapire, R. E. (1995). A decision-theoretic
generalization of on-line learning and an application to
boosting. Computational Learning Theory, 23-37.
Friedman, J. H. (2001). Greedy function approximation: A
gradient boosting machine. Annals of Statistics, 1189-1232.

