An Introduction to Ensemble Methods for Machine Learning

K. Tyler Wilcox Rochester Institute of Technology

April 23, 2016

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Classifying Spam Email: Isn't One Model Enough?

 Consider predicting which emails are spam (spam data from R package kernlab)

- n = 4601 observations
- p = 57 features
- $Y = \{spam, nonspam\}$
- No missing values to deal with
- Pre-process by dropping feature "num857" due to multicollinearity
- Standardize all remaining p = 56 features

Prepare packages and spam data
pacman::p_load(kernlab, dplyr, caret, rpart)
data(spam)
spam = spam %>% tbl_df()
Find correlated predictors
spam %>% select(-type) %>% cor() %>%
findCorrelation(names = TRUE, verbose = TRUE)

Compare row 32 and column 34 with corr 0.996
Means: 0.143 vs 0.059 so flagging column 32
All correlations <= 0.9</pre>

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

[1] "num857"

Drop highly redundant feature 'num857' clean_spam = spam %>% select(-num857) # Split data into train and test set set.seed(122)id tr = clean spam %>% select(type) %>% unlist() %>% createDataPartition(p = 0.75, list = FALSE) train = clean spam %>% dplyr::slice(id tr) test = clean spam %>% dplyr::slice(-id tr) # Center and standarize training data trans = train %>% preProcess(method = c("center", "scale"))

tr = trans %>% predict(newdata = train)

te = trans %>% predict(newdata = test)

Classification Trees (Breiman, 1984)

Given data
$$\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}$$

 $x_i \in \mathcal{X}^p, y_i \in \{1, \dots, g\}, i = 1, \dots, n$

• A tree T partitions \mathcal{X} into K regions R_1, \ldots, R_K where

$$T = \cup_{k=1}^{K} R_k$$

- Tree built using a recursive partitioning algorithm that forms splits over a given feature x_j, j = 1,..., p to minimize node impurity (e.g., Gini index, cross entropy)
- The piecewise estimated function is then

$$\hat{f_T}(x) = \sum_{k=1}^K \hat{y}_k I_k(x)$$
 where $I_k(x) = \mathbb{1}_{x \in R_k}$

$$\hat{y}_k = rg\max\left\{rac{1}{|R_k|}\sum_{x_i\in R_k}I(y_i=c)
ight\},\ c=1,\ldots,g$$

Visualizing Tree Partitioning

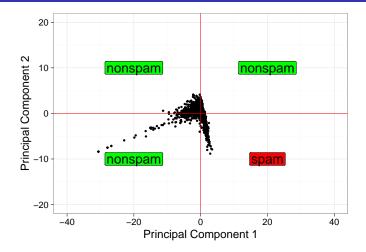


Figure 1. Classification tree estimated predictions

・ロト・西ト・山田・山田・山口・

```
# Set training options
ctrl = trainControl(method = "repeatedcv")
set.seed(333)
# Train and optimize tree, predict on test set
tree_tr = train(form = type ~ .,
                data = tr,
                trControl = ctrl,
                method = "rpart")
pr tree = predict(tree tr,
                  newdata = te %>% select(-type))
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

The pruned classification tree does reasonably well
Accuracy = 87.04%

	Predictions		
True Response	nonspam	spam	
nonspam	653	44	
spam	105	348	

Table 1. Confusion matrix for classification tree

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$\begin{aligned} \mathsf{Error}(x) &= \mathbb{E}[(f(x) - \hat{f}(x))^2] \\ &= \left(\mathbb{E}[\hat{f}(x)] - f(x)\right)^2 + \mathbb{E}\Big[(\hat{f}(x) - \mathbb{E}[\hat{f}(x)])^2\Big] + \sigma^2 \\ &= \mathsf{Bias}^2 + \mathsf{Variance} + \mathsf{Noise} \end{aligned}$$

- Minimize variance \rightarrow over-fit
- Classification tree is fairly accurate but highly unstable
- \blacksquare Increase depth \rightarrow reduce bias, increase variance
- \blacksquare Decrease depth \rightarrow reduce variance, increase variance

■ Form *M* estimators of the true function *g*

 $\{\hat{g}_1(x),\hat{g}_m(x),\hat{g}_M(x)\}$

Assign weights α_m for each learner ĝ_m(x), m = 1,..., M
 Form the ensemble estimator

$$\hat{g}_{ensemble}(x) = \sum_{m=1}^{M} lpha_m \hat{g}_m(x)$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Reducing Variance: Bagging

- Breiman (1996) proposed bootstrap aggregation to reduce variance of an estimator
- Bagging increases accuracy by decreasing variance
- Let learner $\hat{g}_m(x) = \hat{f}_T$ be a classification tree trained on the bootstrap sample m, m = 1, ..., M
- Set weights $\alpha_m = \frac{1}{M}$
- Form the bagged estimator

$$\hat{g}_{bag}(x) = \sum_{m=1}^{M} \alpha_m \hat{g}_m(x)$$
$$= \frac{1}{M} \sum_{m=1}^{M} \hat{f}_T^{(m)}(x)$$

• Trees grown to maximum depth \rightarrow minimal bias

Bagging in R

```
pacman::p_load(doParallel, rpart)
set.seed(333)
cl <- makeCluster(detectCores() - 1, port = 11999)</pre>
registerDoParallel(cl)
# Train and optimize tree, predict on test set
bag_tr = train(form = type ~ .,
               data = tr,
               trControl = ctrl.
               method = "treebag",
               allowParallel = TRUE)
stopCluster(cl)
saveRDS(object = bag tr, file = "bag train.rds")
pr bag = predict(bag tr,
                 newdata = te %>% select(-type))
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Bagging dramatically improves classification tree performance
 Accuracy = 95.91%

Predictions		
True Response	nonspam	spam
nonspam	677	20
spam	27	426

Table 2. Confusion matrix for bagging

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Bagging + Random Subspace Learning: Random Forests

- Breiman (2001) proposes random forest algorithm
- Random forest uses bootstrap sampling of both observations and features for each learner
- Let learner $\hat{g}_m(x) = \hat{f}_T$ be a classification tree trained on the bootstrap sample of observations m, m = 1, ..., M using a random subset of features
- Set weights $\alpha_m = \frac{1}{M}$
- Form the random forest estimator

$$\hat{g}_{rF}(x) = \sum_{m=1}^{M} lpha_m \hat{g}_m(x)$$
 $= rac{1}{M} \sum_{m=1}^{M} \hat{f}_T^{(m)}(x)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

```
pacman::p_load(doParallel, ranger)
set.seed(333)
cl <- makeCluster(detectCores() - 1, port = 11999)</pre>
registerDoParallel(cl)
# Train and optimize tree, predict on test set
rf tr = train(form = type ~ .,
              data = tr.
              trControl = ctrl,
              method = "ranger")
stopCluster(cl)
saveRDS(object = rf_tr, file = "ranger_train.rds")
pr_rf = predict(rf_tr,
                newdata = te %>% select(-type))
```

Random Forest Accuracy

- Random forest provides an improvement over bagging performance
- Accuracy = 96.26%

	Predictions		
True Response	nonspam	spam	
nonspam	678	19	
spam	24	429	

Table 3. Confusion matrix for random forest

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- Freund and Schapire (1995) propose AdaBoost
- Weak learners aggregated with updated weights
- Bootstrapping distribution for learner g_m depends on learner g_{m-1}
- The resulting classifier minimizes the exponential loss function $\sum_i \log(1 + \exp y_i g(x_i)).$

AdaBoost Algorithm

• For
$$m$$
 in $1, ..., M$
• Set $\mathbf{p}^m = \frac{\mathbf{w}^m}{\sum_{i=1}^n w_i^m}$
• For t in $1, ..., T$
• I Fit base learner g_t and compute its error,
 $\epsilon_m = \sum_{i=1}^n p_i^m |g_m(x_i) - y_i|$
• 2 If $\epsilon_m < \epsilon$
• Set $\beta_m = \frac{\epsilon_m}{1 - \epsilon_m}$
• Update weights, $w_i^{m+1} = w_i^m \beta_m^{1-|g_m(x_i) - y_i|}$
• 3 Else resample w_i^m and return to (1)
• $\hat{g}_f(x) = \begin{cases} 1, & \sum_{m=1}^M \log(\beta_m) h_m(x) \le \frac{1}{2} \sum_{m=1}^M \log(\beta_m) \\ 0, & \text{otherwise} \end{cases}$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

```
pacman::p_load(doParallel, adabag)
set.seed(333)
cl <- makeCluster(detectCores() - 1, port = 11999)</pre>
registerDoParallel(cl)
# Train and optimize tree, predict on test set
ada tr = train(form = type ~ .,
               data = tr.
               trControl = ctrl,
               method = "ada")
stopCluster(cl)
saveRDS(object = ada_tr, file = "ada_train.rds")
pr_ada = predict(ada tr,
                  newdata = te %>% select(-type))
```

AdaBoost Accuracy

- AdaBoost provides an improvement over classification trees
- On this data set, AdaBoost performs comparably to bagging but worse than random forest
- Accuracy = 95.74%

	Predictions	
True Response	nonspam	spam
nonspam	674	23
spam	26	427

Table 4. Confusion matrix for AdaBoost

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Gradient Descent in Function Space: Gradient Boosting

AdaBoost is limited by its use of the exponential loss

Sensitive to outliers and noise

- Gradient boosting algorithm proposed by Friedman (2001)
- Generalizes boosting to any loss function for which a gradient is well-defined

Algorithm:

$$\begin{split} F_0(\mathbf{x}) &= \arg\min_{\rho} \sum_{i=1}^n L(y_i, \rho) \\ \text{For } m \in 1, \dots, M \\ & \quad \text{Update } \tilde{y}_i = -\left[\frac{\delta L(y_i, F(\mathbf{x}_i))}{\delta F(\mathbf{x}_i)}\right]_{F(\mathbf{x}) = F_{m-1}(\mathbf{x})}, i = 1, \dots, n \\ & \quad \mathbf{a}_m = \arg\min_{\mathbf{a}, \beta} \sum_{i=1}^n \left[\tilde{y}_i - \beta h(\mathbf{x}_i; \mathbf{a})\right]^2 \\ & \quad \rho_m = \arg\min_{\rho} \sum_{i=1}^n L(y_i, F_{m-1}(\mathbf{x}_i) + \rho h(\mathbf{x}_i; \mathbf{a}_m)) \\ & \quad F_m(\mathbf{x}) = F_{m-1}(\mathbf{x}) + \rho_m h(\mathbf{x}; \mathbf{a}_m) \end{split}$$

```
pacman::p_load(doParallel, xgboost)
set.seed(333)
cl <- makeCluster(detectCores() - 1, port = 11999)</pre>
registerDoParallel(cl)
# Train and optimize tree, predict on test set
gb_tr = train(form = type ~ .,
               data = tr,
               trControl = ctrl.
               method = "xgbLinear",
               allowParallel = TRUE)
stopCluster(cl)
saveRDS(object = gb_tr, file = "gb_train.rds")
pr gb = predict(gb tr,
                  newdata = te %>% select(-type))
```

Gradient Boosting Accuracy

- Gradient boosting provides an improvement over classification trees
- On this data set, gradient boosting performs comparably to bagging and AdaBoost but worse than random forest
- Accuracy = 95.83%

	Predictions	
True Response	nonspam	spam
nonspam	673	24
spam	24	429

Table 5. Confusion matrix for gradient boosting

Cross Validation Estimation of Generalization Error

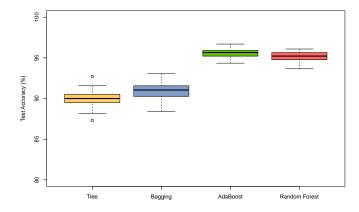


Figure 2. Box plots of the classification test error for the spam data set using 50 rounds of cross validation.

References

- Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). *Classification and regression trees*. Monterey, CA: Wadsworth & Brooks/ Cole Advanced Books & Software. ISBN 978-0-412-04841-8.
- Breiman, L. (1996). Bagging predictors. *Machine Learning*, 24, 123 140.
- Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.
- Freund, Y., & Schapire, R. E. (1995). A decision-theoretic generalization of on-line learning and an application to boosting. *Computational Learning Theory*, 23-37.
- Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 1189-1232.