An Introduction to Ensemble Methods for
Machine Learning

K. Tyler Wilcox
Rochester Institute of Technology

April 23, 2016

Classifying Spam Email: Isn't One Model Enough?

Consider predicting which emails are spam (spam data from R
package kernlab)

n = 4601 observations

p = 57 features

Y = {spam, nonspam}

No missing values to deal with

Pre-process by dropping feature “num857" due to
multicollinearity

Standardize all remaining p = 56 features

Feature Engineering

Prepare packages and spam data

pacman: :p_load(kernlab, dplyr, caret, rpart)

data(spam)

spam = spam %>% tbl_df()

Find correlated predictors

spam %>% select(-type) %>% cor() %>%
findCorrelation(names = TRUE, verbose = TRUE)

Compare row 32 and column 34 with corr 0.996
Means: 0.143 vs 0.059 so flagging column 32
All correlations <= 0.9

[1] "num857"

Training/ Testing Split

Drop highly redundant feature 'num857'
clean_spam = spam %>} select(-num857)
Split data into train and test set
set.seed(122)
id_tr = clean_spam %>, select(type) %>% unlist() %>
createDataPartition(p = 0.75, list = FALSE)
train = clean_spam %>} dplyr::slice(id_tr)
test = clean_spam %>% dplyr::slice(-id_tr)
Center and standarize training data
trans = train %>
preProcess(method = c("center", "scale"))
tr = trans %>, predict(newdata = train)
te = trans %>% predict(newdata = test)

Classification Trees (Breiman, 1984)

Given data D = {(x1,y1),-- -, (Xn, ¥n)}
xi € XP,yie{l,...;g}, i=1,...,n
A tree T partitions X into K regions Ry, ..., Rk where

T = Ul}((:l Rk

m Tree built using a recursive partitioning algorithm that forms
splits over a given feature x;, j = 1,..., p to minimize node
impurity (e.g., Gini index, cross entropy)
The piecewise estimated function is then

K
fT(X) = Zj}k/k(x) where Ik(X) = 1XERk
k=1

Vi = argmax{”%k| > oxier, (Vi = c)} c=1,...,g

Visualizing Tree Partitioning

20-

10- (nonspam| [nonspam|

Principal Component 2
o

_20 -

-40 -20 0 20 40
Principal Component 1

Figure 1. Classification tree estimated predictions

Classification Tree in R

Set training options
ctrl = trainControl(method = "repeatedcv")
set.seed(333)
Train and optimize tree, predict on test set
tree_tr = train(form = type ~ .,

data = tr,

trControl = ctrl,

method = "rpart")
pr_tree = predict(tree_tr,

newdata = te %>% select(-type))

Classification Tree Accuracy: Can We Do Better?

m The pruned classification tree does reasonably well
m Accuracy = 87.04%

Predictions

True Response nonspam spam
nonspam 653 44
spam 105 348

Table 1. Confusion matrix for classification tree

Bias and Variance: Improving Accuracy

A

Error(x) = E[(f(x) — f(x))?]

= (E[?(x)] — f(x)>2 +E {(%(x) —E[f(x)])*| + 02

= Bias? + Variance + Noise

Minimize bias — under-fit

Minimize variance — over-fit

Classification tree is fairly accurate but highly unstable
Increase depth — reduce bias, increase variance
Decrease depth — reduce variance, increase variance

General Ensemble

m Form M estimators of the true function g

{gl(x)7§m(x)7gM(X)}

m Assign weights oy, for each learner gp(x), m=1,.... M
m Form the ensemble estimator

M
Bensemble(X) = Z amEm(x)
m=1

Reducing Variance: Bagging

Breiman (1996) proposed bootstrap aggregation to reduce
variance of an estimator

Bagging increases accuracy by decreasing variance

Let learner g,(x) = fr be a classification tree trained on the
bootstrap sample m, m=1,..., M

Set weights o, = %

Form the bagged estimator

M
Bbag(x) = > amm(x)

m Trees grown to maximum depth — minimal bias

Bagging in R

pacman: :p_load(doParallel, rpart)
set.seed(333)
cl <- makeCluster(detectCores() - 1, port = 11999)
registerDoParallel(cl)
Train and optimize tree, predict on test set
bag_tr = train(form = type ~ .,

data = tr,

trControl = ctrl,

method = "treebag",

allowParallel = TRUE)
stopCluster(cl)
saveRDS(object = bag_tr, file = "bag_train.rds")
pr_bag = predict(bag_tr,

newdata = te %>, select(-type))

Bagging Accuracy

m Bagging dramatically improves classification tree performance
m Accuracy = 95.91%

Predictions

True Response nonspam spam
nonspam 677 20
spam 27 426

Table 2. Confusion matrix for bagging

Bagging + Random Subspace Learning: Random Forests

m Breiman (2001) proposes random forest algorithm

m Random forest uses bootstrap sampling of both observations
and features for each learner

m Let learner &, (x) = fr be a classification tree trained on the
bootstrap sample of observations m, m=1,..., M using a
random subset of features

m Set weights a, = %

m Form the random forest estimator

g

ng(X) = Z O‘mgm(x)
m=1
M ~
()

SN

m=1

Random Forest in R

pacman: :p_load(doParallel, ranger)
set.seed(333)
cl <- makeCluster(detectCores() - 1, port = 11999)
registerDoParallel(cl)
Train and optimize tree, predict on test set
rf_tr = train(form = type ~
data = tr,
trControl = ctrl,
method = "ranger")
stopCluster(cl)
saveRDS(object = rf_tr, file = "ranger_train.rds")
pr_rf = predict(rf_tr,
newdata = te %>}, select(-type))

*

Random Forest Accuracy

m Random forest provides an improvement over bagging
performance
m Accuracy = 96.26%

Predictions

True Response nonspam spam
nonspam 678 19
spam 24 429

Table 3. Confusion matrix for random forest

Weighted Ensembles: AdaBoost

m Freund and Schapire (1995) propose AdaBoost
m Weak learners aggregated with updated weights
m Bootstrapping distribution for learner g, depends on learner

gm—1
m The resulting classifier minimizes the exponential loss function

> log(1 4 exp —yig(xi))-

AdaBoost Algorithm

mForminl,....M

m __ w”

m Set p” = S

mFortinl,.... T

] Fit base learner g and compute its error,
em =y i, P'lgm(xi) — yil

[Ifem <€

m Set B, = =

m Update weights, w/"*! = wi"’ﬂ,l,,_lg’”(x")_y"l
] Else resample w™ and return to (1)

= 2(x) ={ L Yy 108(Om)hm(x) < 3 Y lo&(5m) }

0, otherwise

AdaBoost in R

pacman: :p_load(doParallel, adabag)
set.seed(333)
cl <- makeCluster(detectCores() - 1, port = 11999)
registerDoParallel(cl)
Train and optimize tree, predict on test set
ada_tr = train(form = type ~
data = tr,
trControl = ctrl,
method = "ada")
stopCluster(cl)
saveRDS(object = ada_tr, file = "ada_train.rds")
pr_ada = predict(ada_tr,
newdata = te %>% select(-type))

*

AdaBoost Accuracy

m AdaBoost provides an improvement over classification trees

m On this data set, AdaBoost performs comparably to bagging
but worse than random forest

m Accuracy = 95.74%

Predictions

True Response nonspam spam
nonspam 674 23
spam 26 427

Table 4. Confusion matrix for AdaBoost

Gradient Descent in Function Space: Gradient Boosting

m AdaBoost is limited by its use of the exponential loss
m Sensitive to outliers and noise

m Gradient boosting algorithm proposed by Friedman (2001)

m Generalizes boosting to any loss function for which a gradient
is well-defined

m Algorithm:

m Fo(x) =argmin, > i, L(yi, p)
mFormel,.... M

SL(yi,F(xi))

lUpdate)"/,-:f[SFOx; Ji=1,...,n

:|F(X):Fm—1(x)
B a,=argminagy | [yi — Bh(xi; a)]?
m pm = argmin, 27:1 L(yi, Fm—1(x) + ph(xi; am))
B Frn(x) = Fno1(x) + pmh(x; am)

Gradient Boosting in R

pacman: :p_load(doParallel, xgboost)
set.seed(333)
cl <- makeCluster(detectCores() - 1, port = 11999)
registerDoParallel(cl)
Train and optimize tree, predict on test set
gb_tr = train(form = type ~ .,

data = tr,

trControl = ctrl,

method = "xgbLinear",

allowParallel = TRUE)
stopCluster(cl)
saveRDS(object = gb_tr, file = "gb_train.rds")
pr_gb = predict(gb_tr,

newdata = te %>, select(-type))

Gradient Boosting Accuracy

m Gradient boosting provides an improvement over classification
trees

m On this data set, gradient boosting performs comparably to
bagging and AdaBoost but worse than random forest

m Accuracy = 95.83%

Predictions

True Response nonspam spam
nonspam 673 24
spam 24 429

Table 5. Confusion matrix for gradient boosting

Cross Validation Estimation of Generalization Error

)
8
1
2 sl ————
3 .
< o H
> T :
) —
g H
g 81 B4 :
8 T !
< : j
z
= o
v
@
s
2
T T T T
Tree Bagging AdaBoost Random Forest

Figure 2. Box plots of the classification test error for the spam data
set using 50 rounds of cross validation.

References

m Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J.
(1984). Classification and regression trees. Monterey, CA:
Wadsworth & Brooks/ Cole Advanced Books & Software.
ISBN 978-0-412-04841-8.

m Breiman, L. (1996). Bagging predictors. Machine Learning, 24,
123 - 140.

m Breiman, L. (2001). Random forests. Machine learning, 45(1),
5-32.

m Freund, Y., & Schapire, R. E. (1995). A decision-theoretic
generalization of on-line learning and an application to
boosting. Computational Learning Theory, 23-37.

m Friedman, J. H. (2001). Greedy function approximation: A
gradient boosting machine. Annals of Statistics, 1189-1232.

