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Text Data in Psychology and
Education



Text Data 1n Psychology and Education

e Long history in psychological e Some applications
research and educational .
assessment  Measure student ability
e Freud (1901) e Measure emotion
e General inquirer system (1966) » Study relationships 3 ‘
W .. BELIEVE IT
e Linguistic Inquiry and Word e Early detection of depression i Ngl?fégﬁgfp
Count (LIWC) , o "w YOU BEAT
* Identify prognostic risk = ALZHEIMER’S
» Topic modeling (2003) factors for dementia s
\
 Word embeddings ° ..

(see, e.g., Bennet, 1991; Danner et al., 2001; Tausczik & Pennebaker, 2010)



But Why Not Scales?

What Are We Missing?

e Greater nuance in assessment
e Measure auxiliary or complementary information

e Closed-ended items may overemphasize testing skills, not construct domain

e Better measurement reliability

 Integration of qualitative and quantitative methods

(Boyle & Hutchinson, 2009; Ercikan et al., 1998; Jodoin, 2003; Kjell et al., 2018; Yang et al., 2018)



The Case of Two Participants
What Are We Missing?

o ?ata f;om study of nonsuicidal self-injury (NSSI) and emotional dysregulation
DERS

e Px 1: NSSI = “yes”, Self-Rating =7 e Px 2: NSSI = “yes”, Self-Rating =7
e DERS =108 e DERS =63



What Are We Missing?

Interpersonal Conflict Narratives

e Px 1: NSSI = “yes”, Self-Rating =7 e Px 2: NSSI = “yes”, Self-Rating =7
e DERS =108 e DERS =63
* “Hanging out with roommate * “Roommates had friends
and best friend... friend over... they left a mess and
cracked a joke that felt very never cleaned it in the

insulting” kitchen”




Measurement: Dictionaries



Dictionary Methods

LIWC i1s popular in social science research

Sentiment analysis

friend joke

Predefine constructs with lists of words

insulting
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Limitations of Dictionary Methods

* Inadequate scope of dictionary constructs
e Limited relevance
 Time-consuming and expensive to create

e Cannot account for polysemy

(Garten et al., 2018; Pennebaker et al., 2003)
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Invariance and Polysemy

/Rat.e of.movement
CRAWL Swimming stroke

\ o
\Movmg on hands and knees
“make your skin crawl”




Measurement: Latent Variable
Models



Latent Semantic Indexing
(Not Really a Latent Variable Model)

o Effectively PCA for word frequencies
e Singular value decomposition of document-term matrix

e Eigenvectors and loadings interpreted as “semantic space”

e Over-fits the sample

(Deerwester et al., 1990; Blei et al., 2003)
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Latent Dirichlet Allocation

Probability distributions on words

Word w,, for word 1, 2, ..., N

(Blei et al., 2003)

Topic Models
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Topic Models

Latent Dirichlet Allocation

Probability distributions on words

Topic assignment z, for each word w,,

(Blei et al., 2003)

16



Topic Models

Latent Dirichlet Allocation

Probability distributions on words

—

Topic proportions 6 ,for each document

(Blei et al., 2003)
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Latent Dirichlet Allocation

Probability distributions on words

Independent set of D documents

(Blei et al., 2003)

Topic Models
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Topic Models

Latent Dirichlet Allocation

Probability distributions on words

Hyperparameter vector ‘« for topic proportions

Fixed across documents

—

Y

(Blei et al., 2003)
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Topic Models

Latent Dirichlet Allocation

Probability distributions on words

Topic Fk = probability distribution for vocabulary

(Blei et al., 2003)
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Topic Models

Latent Dirichlet Allocation

—

Probability distributions on words Y

K different topics Fk
K different distributions for vocabulary

OV

(Blei et al., 2003)
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Illustration: Topics

Interpersonal Conflict Narratives

e Topic 1: Work & Romantic Conflict

o 1: Work & Romantic Conflict 2: Family Conflict
e “dad came to visit her at work... embarrassed and work I brother | I
" kind{ I television| I
angry... boyfriend | I annoyed{ N
talking: INNENENEGEE something IIIEIGIGIGNGE
* “she and boyfriend had argument about being in a relationsl,']'fg_ = pholneé_ O
long distance relationship... she wants to move... he angry NN sister1 I
g .ationsnip long! self!
has to stay for his job got| think{
conversation NN head| I
« Topic 2: Family Conflict ol —— SR
sadi N voice N
« “mom and dad just got a divorce... argument with stressed: I . saw: N .
mom and brother..” . 3: Peer Conflict o 4: Living Space Conflict
friends{ NI | lving! I
. . goloInlpFiccEl = 0 0 | room G
e Topic 3: Peer Conflict tr)ggg' ] tmg- ]
| — | ——
e - . , , people; NG home+ IHIIIEINGE
e “friend made joke about her body in class... a little say| I cat| NN
d and hurt..” two{ N would | N
Sd close | N stuff{ I
joke HIIIEGE mess IIEIEGING
e Topic 4: Living Space Conflict el | —
class| NN goingi NG
« “ex-roommate trashed the house and she was pe;{éc’?snoar}3= leaaSQj=
p***ed” 0 0.01 0.02 0 0.01 0.02

Topic-Word Term Scores

Wilcox, Jacobucci, Zhang, & Ammerman (under review)



[llustration: Topic Proportions

Conditioning on Living Space Conflict

Peer Conflict
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Putting Topics In Context

* Like latent factors, researchers have linked topics to other measures

Y= _n+Xp+e

o Surprisingly, an appropriate model is unavailable

(e.g., Finch et al, 2018; He, 2013; Kim et al., 2017; Rohrer et al., 2017)
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Regression with Topics

Current Practice

 Two-stage approach

e 1. Estimate topic proportions

* 2. Use topic proportion estimates as regression predictors
 Two-stage approaches with latent variable models are problematic

o Current interpretation and inferential procedures for topics are incorrect

(Bakk, Tekle, & Vermunt, 2013; Packard et al., 2020; Petersen et al., 2012; Rohrer et al., 2017; Vermunt, 2010; Hayes &
Usami, 2020)
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Supervised Topic Modeling with
Covariates (SLDAX)

Wilcox, Jacobucci, Zhang, & Ammerman (under review)

Funding Acknowledgement: Data presented in this talk was supported by
NIMH 1F31MH107156-01A1 awarded to Brooke A. Ammerman.



Research Objectives

Wilcox, Jacobucci, Zhang, & Ammerman (under review)

* Develop new model to include covariates and topics to predict an outcome

e Evaluate estimation accuracy and efficiency of two-stage approach and our
model

* Propose method to yield interpretable topic effects and correct inferences

27



Proposed Model

SLDAX — Supervised Latent Dirichlet Allocation with Covariates

e Extend LDA model 7 @

28



Proposed Model

SLDAX — Supervised Latent Dirichlet Allocation with Covariates

» Outcome y, with each document Y @

(Blei et al., 2010)
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Proposed Model

SLDAX — Supervised Latent Dirichlet Allocation with Covariates

—

* Regress outcome on topic indicators Y

« Regression coefficients 77

O

. Residual variance ¢*

T

ol

(Blei et al., 2010)
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Proposed Model

SLDAX — Supervised Latent Dirichlet Allocation with Covariates

—

« Covariates X, associated with each Y

document
. @

O

AN

& r@:1
c
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Proposed Model

SLDAX — Supervised Latent Dirichlet Allocation with Covariates

—

 Hyperparameters for regression y
coefficients and residual variance

C_f @

O

AN

© re:1
o
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SLDAX Model

_ .. K p
U\ YalXa, Za| = ) mZak + ) 1 Xy
) ) k=1 j=1

 Extended by generalized linear model framework to normal and dichotomous outcomes
 (Collapsed) Gibbs/Metropolis sampler for Bayesian estimation
e Speed up mixing, reduce autocorrelation in chain

e Potential label switching handled by Stephens’s algorithm

(Cassiday et al., 2020; Dias & Wedel, 2004; Liu, 1994; Stephens, 2000)
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More In Paper

Wilcox, K. T., Jacobucci, R., Zhang, Z., & Ammerman, B. A. (under review). Supervised latent Dirichlet allocation with
covariates: A Bayesian structural and measurement model of text and covariates. PsyArXiv. doi: 10.31234/osf.io/62tc3

D D Ng
L (é, E, _’, 02) — (271'02)_% €XP {_ (202)—1 Z (yd — 7:&77)2} H H Hdzdnﬁzdnwdn
—1 d=1n=1
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Software
R Package

e psychtm
* In development
» Estimation for topics models (LDA, supervised LDA, SLDAX)

o Written in C++ for speed

+ Available on Github )
devtools::install_github(*“ktw5691/psychtm”)

fit < gibbs sldax(y ~ x1 + x2, data = xy, docs = docs, K =2, V

nvocab)
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Design and Methods

e Key Conditions

» Average document length: {15, 80, 150}
e Methods

topics: {2, 5}

Two

stage

a )
One

Simulation Study

subjects: {50, 200, 800, 1500}

-

Stage

VEM LDA

~

Fixed o

~

-
~

-

Estimated
(87

_J
)

J

é )
Regression
\_ J
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Simulation Results

Two-Stage vs. SLDAX

 Two-stage method

* Overestimated regression coefficients w/
estimated hyperparameter

e This gets worse with more data!
 Inconsistent (?) w/ fixed hyperparameter
« SLDAX estimates less biased

 Require adequate sample size and document
lengths

e Can be underestimated

e More efficient (smaller MSE) — not shown here

Relative Bias (%)

Xvais

paxi4 abeis-g

pelewns3 abeis—g

# Documents

#Topics e 2 4 5
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Interpretation & Inference

Topic Regression Coefficients

» Topic proportions are ipsative (i.e., sum to 1)

e Corresponding regression coefficients are conditional means of the outcome
when only that topic Is present

« Common to see all positive or all negative coefficients
 Meaning depends on conditional mean of outcome

 Generally, cannot compare themto O
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Interpretation & Inference

Contrasts

e Define the “e;fect" of a topic on the outcome with contrasts, e.g.,
Zk’;&k Me' 2 0
K —1

Cr = Tk

e Sample ¢k from posterior distribution
e We can interpret the sign and credible interval w.r.t. 0

e Better weighting using Piepel’'s method

(Park, 1978; Piepel, 1982; Snee et al., 1976)
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Empirical Application

Relationships Among Nonsuicidal Self-Injury and Interpersonal Stress

e Undergraduate sample (n = 41); majority (84%) identified as female

* 56% reported NSSI history

* Interview transcripts about a recent upsetting interpersonal interaction
o After pre-processing, median word count = 63

 Self rating of degree of upset/distress for the interaction (Likert: 1—10)

* Modeled emotional dysregulation (DERS) with
e NSSI history
e Self rating

* Interpersonal interaction narrative transcripts

(Gratz et al., 2011)
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Empirical Application
Topics Measured by Interpersonal Interaction Interviews

* Topic 1: Work & Romantic Conflict

» “dad came to visit her at work... embarrassed and e ORCE O C SonTlict ot 2: Family Conflict
work NI rother|
angrym" kind; N television| N
boyfriend; G annoyed NG
. . . talking, N something| I
 “she and boyfriend had argument about being in a elationsh: o] EE— hore] T
long distance relationship... she wants to move... gy ——— e
o o ” t1 TN think, N
he has to Stay for his JOb conversatlgc?n- ] helgd- L]
. . . job+{ N sitting{ [
 Topic 2: Family Conflict SR olke) =
stressed 1IN saw+ N
 “mom and dad just got a divorce... argument with iy 25 el ol . 3 Ll Efperse Com !
. riends| I living G
mom and brother... roommate G room+ NG
trying: GG mad{ NN
. . one; NGNS thing| G
+ Topic 3: Peer Conflict eopls| E— om |
ltwo- ] WOtUI%' L ]
éd ° ° ° . 8 stuff-
e “friend made joke about her body in class... a little oke] — mobs
d d h t ” made1 IIGNE .know- ]
Sad an urt... club: N kitchen, IIEINIIN
class1 N going, G
. .. . personal NN clean1 GG
* Topic 4: Living Space Conflict person /I last I

0.01 0.02 0.01 0.02

Topic-Word Term Scores

o
o

e “ex-roommate trashed the house and she was
p***ed"




Empirical Application

SLDAX Regression Results

e NSSI history associated with greater
DERS

e Topics from negative interpersonal
Interaction jointly explain significant

variability in DERS, AR2? = 15%
e NSSI and self rating explain 24%

e Topic effects likely attenuated

Coefficient /
95% BCI

Contrast (SE)
Self Rating 0.7 (2.2) [-3.7, 5.0]
NSSI History 21.7 (6.5) [8.8, 34.4]

T1: Romantic & Work
Conflict

92.3 (10.42)
9.7 (12.3)

[71.4, 112.6]
[-15.1, 33.7]

67.0 (11.9)
-20.4 (13.3)

[43.2, 90.7]
[-46.3, 6.4]

101.0 (10.3)
19.5 (11.6)

[80.7, 121.8]
[-3.5, 42.3]

T4: Living Space
Conflict

75.4 (11.5)
-10.8 (13.1)

[521, 97.8]
[-36.8, 14.9]
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Summary

Developed new model to incorporate topic model for text into regression
framework

Proposed model yields more accurate and efficient estimates than two-stage
approach used in standard practice

Document length is key for improving regression estimates
Number of documents/subjects is key for power
Contrasts are needed for interpretation and inference

Text can measure what available scales may not
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Future Directions

Integrate topic model and IRT model for closed-ended and constructed
response items (Hong & Wilcox, in preparation)

Longitudinal topic modeling
e Topic measurement invariance

Exploratory vs. confirmatory topics and validation

L4



QU eStiO nS? kwilcox3@nd.edu

Wilcox, K. T., Jacobucci, R., Zhang, Z., & Ammerman, B. A. (under review). Supervised latent Dirichlet allocation with
covariates: A Bayesian structural and measurement model of text and covariates. PsyArXiv. doi: 10.31234/osf.io/62tc3
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