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My Research
Cumulative Data Analysis
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Applications

Text Mining



Outline

• Text data in psychology and education


• Dictionary methods


• Latent variable models


• A new model: supervised topic modeling with covariates


• Estimation, interpretation, and software


• Simulation study


• Application to emotional dysregulation


• Future directions
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Text Data in Psychology and 
Education
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Text Data in Psychology and Education

• Long history in psychological 
research and educational 
assessment


• Freud (1901)


• General inquirer system (1966)


• Linguistic Inquiry and Word 
Count (LIWC)


• Topic modeling (2003)


• Word embeddings


•  Some applications


• Measure student ability


• Measure emotion


• Study relationships


• Early detection of depression


• Identify prognostic risk 
factors for dementia


• …
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(see, e.g., Bennet, 1991; Danner et al., 2001; Tausczik & Pennebaker, 2010)



But Why Not Scales?
What Are We Missing?

• Greater nuance in assessment


• Measure auxiliary or complementary information


• Closed-ended items may overemphasize testing skills, not construct domain


• Better measurement reliability


• Integration of qualitative and quantitative methods
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(Boyle & Hutchinson, 2009; Ercikan et al., 1998; Jodoin, 2003; Kjell et al., 2018; Yang et al., 2018)



The Case of Two Participants
What Are We Missing?

• Px 1: NSSI = “yes”, Self-Rating = 7


• DERS = 108


• Px 2: NSSI = “yes”, Self-Rating = 7


• DERS = 63

7

• Data from study of nonsuicidal self-injury (NSSI) and emotional dysregulation 
(DERS)



What Are We Missing?
Interpersonal Conflict Narratives

• Px 1: NSSI = “yes”, Self-Rating = 7


• DERS = 108


• “Hanging out with roommate 
and best friend… friend 
cracked a joke that felt very 
insulting”


• Px 2: NSSI = “yes”, Self-Rating = 7


• DERS = 63


• “Roommates had friends 
over… they left a mess and 
never cleaned it in the 
kitchen”
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Measurement: Dictionaries
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Dictionary Methods

• LIWC is popular in social science research


• Sentiment analysis


• Predefine constructs with lists of words
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friend joke insulting mess …

2 1 1 0 …

1 0 0 1 ...



Limitations of Dictionary Methods

• Inadequate scope of dictionary constructs


• Limited relevance


• Time-consuming and expensive to create


• Cannot account for polysemy
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(Garten et al., 2018; Pennebaker et al., 2003)



Invariance and Polysemy
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CRAWL
Moving on hands and knees
Swimming stroke
Rate of movement

“make your skin crawl”



Measurement: Latent Variable 
Models

13



Latent Semantic Indexing
(Not Really a Latent Variable Model)

• Effectively PCA for word frequencies


• Singular value decomposition of document-term matrix


• Eigenvectors and loadings interpreted as “semantic space”


• Over-fits the sample
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(Deerwester et al., 1990; Blei et al., 2003)



Topic Models
Latent Dirichlet Allocation
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(Blei et al., 2003)

Probability distributions on words


Word  for word 1, 2, …, wdn Nd



Topic Models
Latent Dirichlet Allocation
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(Blei et al., 2003)

Probability distributions on words


Topic assignment  for each word zdn wdn



Topic Models
Latent Dirichlet Allocation
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(Blei et al., 2003)

Probability distributions on words


Topic proportions  for each document⃗θ d



Topic Models
Latent Dirichlet Allocation
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(Blei et al., 2003)

Probability distributions on words


Independent set of D documents



Topic Models
Latent Dirichlet Allocation
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(Blei et al., 2003)

Probability distributions on words


Hyperparameter vector for topic proportions


Fixed across documents

⃗α



Topic Models
Latent Dirichlet Allocation
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(Blei et al., 2003)

Probability distributions on words


Topic  = probability distribution for vocabulary⃗β k



Topic Models
Latent Dirichlet Allocation
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(Blei et al., 2003)

Probability distributions on words


K different topics 

K different distributions for vocabulary

⃗β k



Illustration: Topics
Interpersonal Conflict Narratives

22Wilcox, Jacobucci, Zhang, & Ammerman (under review)

• Topic 1: Work & Romantic Conflict


• “dad came to visit her at work… embarrassed and 
angry…”


• “she and boyfriend had argument about being in a 
long distance relationship… she wants to move… he 
has to stay for his job”


• Topic 2: Family Conflict


• “mom and dad just got a divorce… argument with 
mom and brother…”


• Topic 3: Peer Conflict


• “friend made joke about her body in class… a little 
sad and hurt…”


• Topic 4: Living Space Conflict


• “ex-roommate trashed the house and she was 
p***ed”



Illustration: Topic Proportions
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Conditioning on Living Space Conflict



Putting Topics in Context

• Like latent factors, researchers have linked topics to other measures
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(e.g., Finch et al, 2018; He, 2013; Kim et al., 2017; Rohrer et al., 2017)

• Surprisingly, an appropriate model is unavailable



Regression with Topics
Current Practice

• Two-stage approach


• 1. Estimate topic proportions


• 2. Use topic proportion estimates as regression predictors


•  Two-stage approaches with latent variable models are problematic


• Current interpretation and inferential procedures for topics are incorrect
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(Bakk, Tekle, & Vermunt, 2013; Packard et al., 2020; Petersen et al., 2012; Rohrer et al., 2017; Vermunt, 2010; Hayes & 
Usami, 2020)



Supervised Topic Modeling with 
Covariates (SLDAX)
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Wilcox, Jacobucci, Zhang, & Ammerman (under review)

Funding Acknowledgement: Data presented in this talk was supported by

NIMH 1F31MH107156-01A1 awarded to Brooke A. Ammerman.



Research Objectives
Wilcox, Jacobucci, Zhang, & Ammerman (under review)

• Develop new model to include covariates and topics to predict an outcome


• Evaluate estimation accuracy and efficiency of two-stage approach and our 
model


• Propose method to yield interpretable topic effects and correct inferences
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Proposed Model
SLDAX — Supervised Latent Dirichlet Allocation with Covariates

• Extend LDA model
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Proposed Model
SLDAX — Supervised Latent Dirichlet Allocation with Covariates

• Outcome  with each documentyd
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(Blei et al., 2010)



Proposed Model
SLDAX — Supervised Latent Dirichlet Allocation with Covariates

• Regress outcome on topic indicators


• Regression coefficients 


• Residual variance 

⃗η

σ2
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(Blei et al., 2010)



Proposed Model
SLDAX — Supervised Latent Dirichlet Allocation with Covariates

• Covariates  associated with each 
document

⃗x d

31



Proposed Model
SLDAX — Supervised Latent Dirichlet Allocation with Covariates

• Hyperparameters for regression 
coefficients and residual variance
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SLDAX Model

• Extended by generalized linear model framework to normal and dichotomous outcomes


• (Collapsed) Gibbs/Metropolis sampler for Bayesian estimation


• Speed up mixing, reduce autocorrelation in chain


• Potential label switching handled by Stephens’s algorithm
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(Cassiday et al., 2020; Dias & Wedel, 2004; Liu, 1994; Stephens, 2000)



More in Paper

34

Wilcox, K. T., Jacobucci, R., Zhang, Z., & Ammerman, B. A. (under review). Supervised latent Dirichlet allocation with 
covariates: A Bayesian structural and measurement model of text and covariates. PsyArXiv. doi: 10.31234/osf.io/62tc3 



Software
R Package

• psychtm


• In development


• Estimation for topics models (LDA, supervised LDA, SLDAX)


• Written in C++ for speed


• Available on Github


devtools::install_github(“ktw5691/psychtm”)


fit <- gibbs_sldax(y ~ x1 + x2, data = xy, docs = docs, K = 2, V = nvocab)
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Simulation Study
Design and Methods

• Key Conditions


• # topics: {2, 5}


• # subjects: {50, 200, 800, 1500}


• Average document length: {15, 80, 150}


• Methods
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Two 
Stage

One 
Stage

VEM LDA
Fixed 

Estimated 

SLDAX

Regression



Simulation Results
Two-Stage vs. SLDAX

• Two-stage method


• Overestimated regression coefficients w/ 
estimated hyperparameter


• This gets worse with more data!


• Inconsistent (?) w/ fixed hyperparameter


• SLDAX estimates less biased


• Require adequate sample size and document 
lengths


• Can be underestimated


• More efficient (smaller MSE) — not shown here
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Interpretation & Inference
Topic Regression Coefficients

• Topic proportions are ipsative (i.e., sum to 1)


• Corresponding regression coefficients are conditional means of the outcome 
when only that topic is present


• Common to see all positive or all negative coefficients


• Meaning depends on conditional mean of outcome


• Generally, cannot compare them to 0

38



Interpretation & Inference
Contrasts

• Define the “effect” of a topic on the outcome with contrasts, e.g.,




• Sample  from posterior distribution


• We can interpret the sign and credible interval w.r.t. 0


• Better weighting using Piepel’s method
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(Park, 1978; Piepel, 1982; Snee et al., 1976)



Empirical Application
Relationships Among Nonsuicidal Self-Injury and Interpersonal Stress

• Undergraduate sample (n = 41); majority (84%) identified as female


• 56% reported NSSI history


• Interview transcripts about a recent upsetting interpersonal interaction


• After pre-processing, median word count = 63


• Self rating of degree of upset/distress for the interaction (Likert: 1—10)


• Modeled emotional dysregulation (DERS) with


• NSSI history


• Self rating


• Interpersonal interaction narrative transcripts
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(Gratz et al., 2011)



Empirical Application
Topics Measured by Interpersonal Interaction Interviews
• Topic 1: Work & Romantic Conflict


• “dad came to visit her at work… embarrassed and 
angry…”


• “she and boyfriend had argument about being in a 
long distance relationship… she wants to move… 
he has to stay for his job”


• Topic 2: Family Conflict


• “mom and dad just got a divorce… argument with 
mom and brother…”


• Topic 3: Peer Conflict


• “friend made joke about her body in class… a little 
sad and hurt…”


• Topic 4: Living Space Conflict


• “ex-roommate trashed the house and she was 
p***ed”
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Empirical Application
SLDAX Regression Results

• NSSI history associated with greater 
DERS


• Topics from negative interpersonal 
interaction jointly explain significant 
variability in DERS, R2 = 15%


• NSSI and self rating explain 24%


• Topic effects likely attenuated

Δ
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Coefficient /

Contrast (SE)

95% BCI

Self Rating 0.7 (2.2) [-3.7, 5.0]

NSSI History 21.7 (6.5) [8.8, 34.4]

T1: Romantic & Work 
Conflict

92.3 (10.42)

9.7 (12.3)

[71.4, 112.6]

[-15.1, 33.7]

T2: Family Conflict
67.0 (11.9)

-20.4 (13.3)

[43.2, 90.7]

[-46.3, 6.4]

T3: Peer Conflict
101.0 (10.3)

19.5 (11.6)

[80.7, 121.8]

[-3.5, 42.3]

T4: Living Space 
Conflict

75.4 (11.5)

-10.8 (13.1)

[52.1, 97.8]

[-36.8, 14.9]



Summary

• Developed new model to incorporate topic model for text into regression 
framework


• Proposed model yields more accurate and efficient estimates than two-stage 
approach used in standard practice


• Document length is key for improving regression estimates


• Number of documents/subjects is key for power


• Contrasts are needed for interpretation and inference


• Text can measure what available scales may not
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Future Directions

• Integrate topic model and IRT model for closed-ended and constructed 
response items (Hong & Wilcox, in preparation)


• Longitudinal topic modeling


• Topic measurement invariance


• Exploratory vs. confirmatory topics and validation
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Questions?
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kwilcox3@nd.edu

Wilcox, K. T., Jacobucci, R., Zhang, Z., & Ammerman, B. A. (under review). Supervised latent Dirichlet allocation with 
covariates: A Bayesian structural and measurement model of text and covariates. PsyArXiv. doi: 10.31234/osf.io/62tc3 


