Modeling approaches for cross-sectional integrative data analysis

Evaluations and recommendations

Kenneth Tyler Wilcox & Lijuan Wang

Department of Psychology, University of Notre Dame

IMPS, 21 July 2021

What is Integrative Data Analysis?

Advantages

Current Practice

Participant-Level and Study-Level Effects

Integrative Data Analysis (IDA)

Integrative data analysis (IDA) simultaneously analyzes the *participant-level* data from multiple studies (Curran & Hussong, 2009)

- Also known as
 - individual participant meta-analysis (Cooper & Patall, 2009)
 - individual patient data meta-analysis (Stewart & Tierney, 2002)
 - mega-analysis (McArdle et al., 2009)
 - data fusion (Marcoulides & Grimm, 2017)

Advantages of IDA

- Use of multiple samples introduces and allows modeling of between-sample heterogeneity
- Directly assess the replicability of effects across studies and populations
- Can fit more complex models and answer new research questions
- Longitudinal analysis of longer timespans is often possible
- Improved harmonic measurements

(Bauer & Hussong, 2009; Curran et al., 2018; Curran & Hussong, 2009; Marcoulides & Grimm, 2017; McArdle et al., 2009; Stewart & Tierney, 2002)

Current Practice of IDA in Psychology

• PsycINFO literature search: 1988--2020

• 91% of 421 articles used fixed-effects models; minimal disaggregation

Participant-Level and Study-Level Effects

Participant-Level Effects per Study

Average participant-level effect of X on Y: γ_W (dot-dashed/purple line)

Variability of intercepts $ightarrow \sigma_{u_0}^2$

Variability of slopes $ightarrow \sigma_{u_1}^2$

Participant-Level and Study-Level Effects

Study-Level Effect

Study-level effect of $ar{X}$ on $ar{Y}$: γ_B (dotted/red line)

Participant-Level and Study-Level Effects

Failure to Disaggregate

Aggregated effect: γ_A (dashed/blue line)

"An uninterpretable blend" (Raudenbush & Bryk, 2002, p. 138) of γ_W and γ_B

Research Questions

What Models Can Disaggregate Participant- and Study-Level Effects?
 How Do We Account for Between-Study Heterogeneity?
 What Methods Work in IDA Small Sample Scenarios?

IDA Models

Aggregated Regression Disaggregated Regression Study-Specific Coefficients Regression Fixed-Slope Multilevel Model Random-Slopes Multilevel Model

Aggregated vs. Disaggregated Regression

Aggregated Regression

$$egin{aligned} y_{ij} &= \gamma_{00} + \gamma_A x_{ij} + e_{ij} \ e_{ij} &\sim \mathrm{N}\left(0, \sigma_e^2
ight) \end{aligned}$$

• γ_A conflates participant- and study-level fixed effects as a weighted function of the intrastudy correlation

$$\circ \,\, \gamma_A = (1-\lambda)\gamma_W + \lambda\gamma_B$$

• Popular in application

Sources of between-study heterogeneity are *ignored* (Hamaker & Muthén, 2020; Neuhaus & Kalbfleisch, 1998; Raudenbush & Bryk, 2002)

Disaggregated Regression

$$egin{aligned} y_{ij} &= \gamma_{00}^* + \gamma_B ar{x}_j + \gamma_W \left(x_{ij} - ar{x}_j
ight) + e_{ij} \ e_{ij} &\sim \mathrm{N}\left(0, \sigma_e^2
ight) \end{aligned}$$

- γ_B : study-level fixed effect
- γ_W : average participant-level fixed effect

Study-Specific Coefficients Regression

• Extends disaggregated regression model to model mean heterogeneity

$$egin{aligned} y_{ij} &= \sum_{k=1}^J \gamma_{0k} I(k=j) + \gamma_W x_{ij} + e_{ij} \ e_{ij} &\sim \mathrm{N}\left(0, \sigma_e^2
ight) \end{aligned}$$

- Cannot include study-level effect of $ar{x}_j$
- Accounts for between-study heterogeneity in study outcome means $ar{y}_{i}$

Fixed-Slope Multilevel Model

• Extends the disaggregated regression model to model mean heterogeneity

$$egin{aligned} ext{Level 1: } y_{ij} &= eta_{0j} + eta_{1j} \left(x_{ij} - ar{x}_j
ight) + e_{ij} \ ext{Level 2: } eta_{0j} &= \gamma_{00} + \gamma_B ar{x}_j + u_{0j} \ eta_{1j} &= \gamma_W \ &\left[egin{aligned} ec{e}_j \ u_{0j} \end{array}
ight] &\sim \mathrm{N} \left(egin{bmatrix} ec{0} \ 0 \end{bmatrix}, egin{bmatrix} \sigma_e^2 ec{I}_{n_j} & 0 \ 0 & \sigma_{u_0}^2 \end{bmatrix}
ight) \end{aligned}$$

- $\sigma_{u_0}^2$: between-study variance in study conditional means
- More parsimonious than the SSC regression model at the cost of a distributional assumption

Random-Slopes Multilevel Model

Extend the fixed-slope MLM to incorporate heterogeneity in (1) means and (2) participant-level effects

$$egin{aligned} ext{Level 1: } y_{ij} &= eta_{0j} + eta_{1j} \left(x_{ij} - ar{x}_j
ight) + e_{ij} \ ext{Level 2: } eta_{0j} &= \gamma_{00} + \gamma_B ar{x}_j + u_{0j} \ eta_{1j} &= \gamma_W + u_{1j} \ & \left[egin{aligned} ec{e}_j \ u_{0j} \ u_{1j} \end{array}
ight] &\sim \mathrm{N} \left(egin{bmatrix} ec{0} \ 0 \ 0 \ 0 \end{bmatrix}, egin{bmatrix} \sigma_e^2 ec{I}_{n_j} & 0 & 0 \ 0 & \sigma_{u_0}^2 & \sigma_{u_01} \ 0 & \sigma_{u_0}^2 & \sigma_{u_1} \end{matrix}
ight) \end{aligned}$$

• $\sigma_{u_1}^2$: between-study variance in participant-level effects

RQ1 and RQ2: Disaggregation and Heterogeneity

Table 1Overview of Five Models for IDA

Model	Equations	γ_B	γ_W	γ_A	$\sigma_{u_0}^2$	$\sigma_{u_1}^2$
A LR	$y_{ij} = \gamma_{00}^* + \gamma_A x_{ij} + e_{ij}$			1	= 0	= 0
	e_{ij} ~ N $\left(0,\sigma_e^2\right)$					
D LR	$y_{ij} = \gamma_{00} + \gamma_W (x_{ij} - \overline{x}_j) + \gamma_B \overline{x}_j + e_{ij}$	1	✓		= 0	= 0
	e_{ij} ~ N $\left(0,\sigma_e^2\right)$					
SSC LR	$y_{ij} = \sum_{k=1}^{J} \gamma_{0k} I(k=j) + \gamma_W x_{ij} + e_{ij}$		1			= 0
	$e_{ij} \sim \mathrm{N}\left(0, \sigma_e^2\right)$					
FS MLM	$y_{ij} = \beta_{0j} + \gamma_W(x_{ij} - \overline{x}_j) + e_{ij}$	1	✓		1	= 0
	$\beta_{0j} = \gamma_{00} + \gamma_B \overline{x}_j + u_{0j}$					
	$u_{0j} \sim \mathrm{N}\left(0, \sigma_{u_0}^2\right), \ e_{ij} \sim \mathrm{N}\left(0, \sigma_e^2\right)$					
RS MLM	$y_{ij} = eta_{0j} + eta_{1j}(x_{ij} - \overline{x}_j) + e_{ij}$	1	✓		1	✓
	$\beta_{0j} = \gamma_{00} + \gamma_B \overline{x}_j + u_{0j}$					
	$\beta_{1j} = \gamma_W + u_{1j}$					
	$\begin{bmatrix} u_{0j} \\ u_{1j} \end{bmatrix} \sim \mathbf{N} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_{u_0}^2 & \sigma_{u_{01}} \\ \sigma_{u_{01}} & \sigma_{u_1}^2 \end{bmatrix} \right), e_{ij} \sim \mathbf{N} (0, \sigma_e^2)$					

RQ3: Small Sample IDA Methods and Performance

Underevaluated Impact of Variance Effect Sizes

Underevaluated MLM Degrees of Freedom Methods for IDA

Simulation Study Design

- Generated data from fixed-slope and random-slopes MLMs with 1,000 replications
- Unbalanced study sample sizes based on Hornburg et al. (2018)
- Set parameters using proportion of variance effect sizes (Rights & Sterba, 2019)
- Factors
 - Number of studies: 2, 3, ..., 35
 - Average study sample size: 25, 51, 101
 - \circ Effect size of γ_B : 0, "small", "medium"
 - $\circ\,$ Effect size of γ_W : 0, "small", "medium"
 - \circ Effect size of $\sigma^2_{u_0}$: 0, "small", "medium"
 - $\circ\,$ Effect size of $\sigma^2_{u_1}$: 0, "small", "medium"
- Evaluated degrees of freedom (DF) methods in SAS Proc MIXED: Residual, Containment, Between-Within, Satterthwaite, Kenward-Roger

Testing γ_B Depends on DF Method and $\sigma^2_{u_0}$

- Type I error rate for study-level effect affected by degree of mean heterogeneity
 - $\circ \ \sigma^2_{u_0}$ needs to be modeled if $\sigma^2_{u_0} > 0$: FS MLM or RS MLM
 - $\circ\,$ Type I error rate depends on effect size of $\sigma^2_{u_0}$ and DF method
- Between-Within, Satterthwaite and Kenward-Roger DF worked well with at least 5-14 studies
 - $\circ\,$ For small $\sigma^2_{u_0}$, Satterthwaite DF needed fewer (6) studies
 - \circ For medium $\sigma^2_{u_0}$, Kenward-Roger DF needed fewer (5) studies

Testing γ_W Depends on DF Method and $\sigma_{u_1}^2$

- Type I error rate for average participant-level fixed effect affected by degree of participant-level effect heterogeneity
 - $\circ \ \sigma_{u_1}^2$ needs to be modeled if $\sigma_{u_1}^2 > 0$: RS MLM
 - $\circ\,$ Type I error rate depends on effect size of $\sigma^2_{u_1}$ and DF method
- Containment, Satterthwaite, and Kenward-Roger DF methods worked well with at least 4-15 studies
 - Previous research recommended Kenward-Roger DF
 - Containment DF needed fewer (5 or 6) studies (see also Ferron et al., 2009)

(Huang, 2016; Kenward & Roger, 1997; McNeish, 2017; McNeish & Stapleton, 2016; Morris et al., 2018)

Recommendations

Recommendations

- Disaggregate participant-level and study-level fixed effects
- Carefully consider and model sources of between-study heterogeneity
 - Failing to do so can yield incorrect type I error rates for one or both levels of fixed effects
- With a small number of studies, random-slopes MLM can yield accurate estimates and wellcontrolled type I error rates for both types of fixed effects
 - Appropriate degrees of freedom methods are critical
 - Kenward-Roger (1997) DF for study-level fixed effect
 - Containment DF for participant-level fixed effect
- Overall, MLM can be a viable option for IDA with even as few as six studies

Thanks!

A kwilcox3@nd.edu

• www.ktylerwilcox.me

𝔗 Slides:

https://www.ktylerwilcox.me/slides/2021imps-wilcox-wang-slides.pdf

Paper:

Wilcox, K. T., & Wang, L. (In press). Modeling approaches for cross-sectional integrative data analysis: Evaluations and recommendations. *Psychological Methods*. https://doi.org/10.1037/met0000397