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Text is an increasingly popular data source

Social media (Schwartz et al., 2013)
Open-ended questions (Popping, 2015)
Medical health records (Obeid et al., 2019)

Various overviews exist on existing text mining algorithms for
psychological research (Finch et al., 2018; Iliev et al., 2015; Kjell et
al., 2019; Rohrer et al., 2017)

These algorithms are often designed for large data sets

Current challenge is to adapt these algorithms to psychological
research

Text Data in Psychology
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Top Down

Dictionary methods

LIWC (Tausczik et al.,
2010)
Sentiment analysis

Dictionaries may not be valid
for given data

Bottom Up

Qualitative analysis
Gold standard
Time-consuming and
expensive
Hard to reuse

Quantitative models
Faster and cheaper
Reusable

Modeling Text as Data
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Topic Modeling
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Seminal topic model (Blei et al.,
2003) 

Topics: 
 

Topic proportions: 
 

Topic assignments: 

Words: 

Latent Dirichlet Allocation (LDA)

L(→Θ, →B) =
D

∏
d=1

Nd

∏
n=1

βzdn,wdn
θd,zdn

→βk = Pr [wdn = m|zdn = k]
→βk ∼ Dir(→γ)

→θd = Pr [zdn = k]
→θd ∼ Dir(→α)

(zdn|→θd) ∼ Cat(→θd)

(wdn|zdn = k, →βk) ∼ Cat(→βk)
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Two-stage approach (Packard et al., 2020; Rohrer et al., 2017)
Use estimated  to predict 
Could include other manifest predictors 

One-stage approach
Supervised topic model (SLDA; Blei et al., 2010)
Does not include 

We propose the SLDAX model
One-stage approach
Allow topics and manifest predictors of 

Fusing Topic Models and Regression

→Θ Y

→X

→X

Y
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SLDAX
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Gibbs Sampler for Y |⋅ ∼ N(⋅)

f (zd,n = k|⋅) ∝ exp{− (yd − (→z̄d, →xd)
′
→η)

2

}×1
2σ2

(n(−n)

dk
+ α)( )

n
(−n)

kv
+γ

n
(−n)

k
+V γ

f (σ2|⋅) = IG( , (b0 + ∑d [yd − (→z̄d, →xd)
′
→η]

2

))a0+D

2
1
2

f (→η |⋅) = N(→η1, →Σ1)

→Σ1 = (→Σ
−1

0 + σ−2(→Z̄, →X)
′

(→Z̄, →X))
−1

→η1 = →Σ1 (→Σ
−1

0 →μ0 + σ−2(→Z̄, →X)
′
→y)
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Use Metropolis-Hastings algorithm to sample
Independent proposal distributions

Tune  during burn-in

MH-in-Gibbs for Y |⋅ ∼ Ber(⋅)

f (zdn = k|⋅) ∝ (n(−n)

dk
+ α)( )

exp{yd(→z̄d,→xd)
′
→η}

1+exp{(→z̄d,→xd)
′
→η}

n
(−n)

kv
+γ

n
(−n)

k
+V γ

f (→η |⋅) ∝ ∏d

⎡
⎢
⎣

⎤
⎥
⎦

×
exp{yd(→z̄d,→xd)

′
→η}

1+exp{(→z̄d,→xd)
′
→η}

exp{− (→η − →μ0)
′
→Σ

−1

0 (→η − →μ0)}1
2

ηj ∼ N (μj, τj)
τj
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psychtm R package in early development

Features

LDA, SLDA, SLDAX MCMC algorithms implemented in C��
Normal and dichotomous outcomes supported

Estimation and visualization of  and 
Model selection by WAIC (Watanabe, 2010)

Available from Github 

devtools��install_github("ktw5691/psychtm")

Software

→Θ →B
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Goal

Compare SLDAX with two-stage approach (LDA + OLS regression)
SLDAX from our R package psychtm
LDA model from R package topicmodels

Conditions
# topics : 2 and 5
# documents : 200, 800, and 1500
Mean # words : 15, 80, and 150
Vocabulary : 500 and 1000

Simulation Study

K

D

N̄d

V
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Data Generation

SLDAX model
 w/  = .15

 topics w/ joint  = .35

Estimation

SLDAX with flat priors
Two-stage

�. LDA: estimated w/ variational EM (same hyper-parameters)
�. OLS regression

Simulation Study

X ∼ N(0, 1) R2

Y ∼ N(⋅)
K R

2
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Two-Stage Estimation Bias for ηz̄
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SLDAX Estimation Bias for ηz̄
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882 adults recruited on MTurk
: Beck Hopelessness Scale (Beck et al., 1989)

"What are your expectations for the future?"
M = 50 words, SD = 24, Range = 5 – 186
After stopword removal and stemming:

Median length was 18 words (M = 21, SD = 10, Range = 2 –
76)
Vocabulary of 3096 stems (98% of original vocabulary)

Manifest predictors
Depression Anxiety Stress Scales (Lovibond et al., 1995)
Age (M = 33, SD = 10, Range = 18 – 79)

Illustrative Example

Y
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Regression Estimates

Effect = η̂k − K−1 ∑
K
j≠k η̂ j
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Topic Estimates
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Hopelessness in responses associated with BHS

Convergent validity for topics
Text topics associated with BHS above and beyond DASS

Topic effects may be attenuated based on simulation results

Large , small 

Could predict on new data or update model using new data

Conclusions

D N̄d
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Key Findings

We derived MCMC algorithms to estimate SLDAX models
SLDAX models implemented in open-source R package
The popular two-stage approach yields biased regression
estimates
SLDAX yields accurate estimates with shrinkage in small-data
scenarios

Future Work

SLDAX framework can be generalized
Integration with SEM
Longitudinal / EMA data

Impact of text data quality on performance

Discussion
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 kwilcox3@nd.edu

 ktylerwilcox.netlify.app

 @ktw5691

 Slides:

ktylerwilcox.netlify.app/talk/2020-isdsa-sldax/

Thanks!
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